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Spin splitting of the energy spectrum of single-layer graphene on Au/Ni�111� substrate has been recently
reported. I show that eigenstates of spin-orbit coupled graphene are polarized in-plane and are perpendicular to
electron momentum k; the magnitude of spin polarization S vanishes when k→0. In a perpendicular magnetic
field B, S is parallel to B, and two zero modes emerge in the Landau level spectrum. Singular B dependence
of their magnetization suggests existence of a new variety of magnetic instability. They also manifest them-
selves in a new variety of unconventional quantum Hall effect.
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Since the discovery of graphene with its quasirelativistic
energy spectrum of zero-gap Dirac fermions1,2 and uncon-
ventional quantum Hall effect �QHE� in single- and bilayer
graphene,3–5 this material attracts attention because of its
unique electronic properties and prospective applications in
nanoelectronics.6,7 Applications in spintronics depend
strongly on the control of spin-orbit �SO� coupling. This cou-
pling in graphene comprises intrinsic and extrinsic
components.8,9 First one is known to be very weak in free
plane graphene;10,11 in carbon nanotubes it is due to their
curvature.12–14 Extrinsic SO coupling originates from the in-
terface between graphene and substrate. Recently Varykha-
lov et al.15 reported spin angle-resolved photoemission spec-
troscopy �SARPES� data from single-layer graphene on
Ni�111� intercalated with a Au monolayer. They reveal strong
momentum-dependent in-plane spin polarization. The mono-
layer of Au maintains the symmetry of graphene and strongly
reduces the threefold deformation of graphene �originating
from its coupling to Ni substrate� and nonequivalence of
A�B� lattice sites resulting from it. According to Ref. 15, the
technique brings the system closer to ideal freestanding
graphene than any other preparation on a solid substrate be-
fore. These results call for a systematic theory of spin polar-
ization in freestanding graphene with extrinsic SO coupling,
and in this Rapid Communication I provide such a theory for
free electrons and electrons in a quantizing magnetic field B.
The results are in general agreement with the data of
Varykhalov et al.15 and predict �i� dependence of spin polar-
ization on the magnitude of the momentum k at the SO mo-
mentum scale, �ii� spin zero modes in a quantizing field in-
dicating a new variety of magnetic instability, and �iii� a new
variety of unconventional QHE.

A 4�4 Hamiltonian of graphene with extrinsic SO cou-
pling can be represented in terms of a Kronecker product of
2�2 matrices �= ��1 ,�2� and s as9

HK
0 = ��� · k� +

1

2
��� � s�z. �1�

Here �=�v, v�108 cm s−1, and � is a SO coupling con-
stant; for graphene/Au/Ni�111�, ����13 meV.15 Pauli matri-
ces of pseudospin � operate on A�B� lattice cites, and s are

Pauli matrices for real spin. It is seen from first term in Eq.
�1� that � transforms as momentum k. Therefore, as was
pointed out by Kane and Mele,9 SO term can be considered
as a modified Rashba term with k→�; the conventional
Rashba term �k�s�z is small and will be disregarded. In the
same representation, 4�4 spin matrices are �0s, with �0 for
a unit matrix in � space. The Hamiltonian HK

0 is acting near
the K point of the Brillouin zone �Fig. 1�; for K� point,
HK�

0 =�2HK
0 �2

−1.
It is convenient to change from the 4�4 to a 2�2 for-

malism. First, we perform a unitary transformation of the
Hamiltonian, HK=UHK

0 U−1 and of spin matrices �0s with a
unitary matrix U= ��s0+sz��0+ �s0−sz��1� /2, with s0 being a
unit matrix in spin space. Then

HK = � 0 C

C+ �sy
�, Ŝ = �1s, Ŝz = �0sz, �2�

with C=��s0kx− iszky�; here �Ŝ , Ŝz� are new spin matrices.
Next step is eliminating lower components of eigenbispinors
�= � �

	 � of the equation HK�=
�,

	 = �
 − �sy�−1C+� =
�


2 − �2� 
k+ − i�k−

i�k+ 
k−
�� . �3�

Then we arrive at a 2�2 Hamiltonian,

µν = +1 electrons µν = −1 valence band

K K

K

K

K

K′

K′

K′kx

ky

FIG. 1. �Color online� Spin polarization of the energy spectrum
of spin-orbit coupled single-layer graphene with the dispersion law
of Eq. �6� and spin-orbit coupling constant ��0; energy �
���.
Polarization is identical in K and K� valleys. External circles:
�= +1; internal circles: �=−1. For �
0, the quantum numbers, �
and �, and spin polarizations change their signs for all branches.
Brillouin zone of graphene is also shown.
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H�
� =
�2


2 − �2�
k−k+ − i�k−
2

i�k+
2 
k+k−

� , �4�

that depends explicitly on its eigenvalues 
, H�
��=
�.
When B�0, operators k�=kx� iky do not commute; below,
B=Bẑ. We note that Eq. �4� is exact, and despite the fact that
the problem is nonlinear in 
, calculation of spin polarization
in this representation is more concise than in the original
4�4 representation.

For free carriers, B=0, eigenspinors of H�
� are

���k� =
1
	2

�i�k−
2/k2

1
�, � = � 1. �5�

From Eqs. �2� and �4� follows an equation 
��
�+���
=�2k2 for the eigenvalues 
�. Its solutions are


���k� =
��

2
�	�2 + 4�2k2 − ���, � = � 1. �6�

The spectrum includes two zero-gap branches and two
gapped branches of the same shape. The gap equals 2���, and
the separation between gapped and ungapped branches is k
independent and equals �. The spectrum is similar to the
spectrum of unbiased bilayer graphene without SO
coupling,16–18 but the nature of eigenstates is quite different.

It is easily seen from Eqs. �2� and �5� that 
���Ŝz����=0;

hence, spins are in-plane polarized. Because Ŝ includes �1,
calculation of in-plane polarization involves the lower spinor
	 and is more cumbersome. Nevertheless, it is straightfor-
ward, and applying Eqs. �3�, �5�, and �6� results in in-plane
spin polarizations S���k� for all �� ,�� states,

S���k� =

����Ŝ�����

��������

=
2���k � ẑ�
	�2 + 4�2k2

, �7�

proportional to the group velocity v���k�=�
�� /��k. Equa-
tion �7� indicates transverse spin polarization �Fig. 1�, as
concluded by Varykhalov et al.15 Its magnitude is k depen-
dent. When k�k�, with k�= ��� /2� being a characteristic SO
momentum, it saturates, �S���→1. In the k�k� limit, it van-

ishes as k /k�. Vanishing of all S���k→0�, with Ŝ2=3, is a
unique property of the Dirac points.

Chirality of the spinor ���k� is defined by �, spin polar-
ization S�� by �, and the product �� specifies electron and
hole spectrum branches. Experiments of Ref. 15 measured
the magnitude of �, ����13 meV. Measuring the sign of S��

would allow finding the sign of �.19 Indeed, it is seen from
Eq. �6� that � /��0 for external Fermi circles. Due to the
requirements of time-inversion symmetry, spin polarization
is identical near K and K� points. It is not clear currently
which of the factors �experimental resolution, temperature,
or staggered potential of Ni substrate� was the main obstacle
for measuring SARPES spectra for k�k�. However, mea-
surement of S�� for k�k� should shed additional light on the
role of these factors.

Application of well-developed techniques for detecting
in-plane polarization S�k�, based on Kerr spectroscopy20–22

and spin-galvanic effect,23 is hampered by the conductivity
of metallic substrate. Reducing its thickness to only a few

monolayers or developing insulating substrates can render
them proper efficacy.

For B � ẑ, applying a Peierls substitution k=−i� +eA /�c,
with A being a vector potential, one expresses k� in terms of
Bose operators, k+= �	2 /��a+, k−= �	2 /��a, and �a ,a+�=1;
here, �=	c� /eB is a magnetic length. Then, instead of Eq.
�4�, one arrives at

Ĥ��� = ���
2�2

�2 − 1
� �aa+ − i�a2

i��a+�2 �a+a
� , �8�

where �=� / ���, �=
 / ���, and �=� /����. The Hamiltonian

Ĥ��� depends explicitly on its eigenvalues �. From here on,
energy � is measured in units of ���.

Solution of the corresponding eigenspinor problem can be
found in terms of oscillator eigenfunctions24 �n,

�n = �c1�n−2

c2�n
�, 	n = �c3

c4
��n−1,

�c3

c4
� =

�	2

�2 − 1
��	n − 1c1 − i�	nc2

i�	n − 1c1 + �	nc2
� , �9�

for n�2. The coefficients c1,2=c1,2�n�, normalized as
�c1�2+ �c2�2=1, read as

c1

c2
=

i���1 + 2n�2 − �2�
2	n�n − 1��2

, c2 =
	n

2n�1 + �2� − �2 . �10�

Eigenvalues obey the equation

�4 − �1 + 2�2�2n − 1���2 + 4n�n − 1��4 = 0 �11�

and are

��n
��2 =

1

2
�1 + 2�2n − 1��2 � 	1 + 4�2n − 1��2 + 4�4� .

�12�

Equation �12� coincides with the expression for bilayer
graphene in absence of SO coupling.18,25,26

In addition to the solutions with n�2, there are solutions
with n�1 that are of special interest because of their pecu-
liar spin properties. For n=0, there is a single solution
c1�0�=0, c2�0�=1, and 	0=0, with �0=0. For n=1, there are
three solutions with c1�1�=0 and c2�1�=1; they differ by
their 	1 spinors. For one of them the eigenvalue vanishes,
�1

0=0, and components of the spinor 	1
0 are c3= i��	2 and

c4=0. Two nonvanishing eigenvalues are �1= �	1+2�2; the
components of the corresponding spinors 	1 are
c3=−i� /�	2, c4=�1 /�	2. These expressions can also be
found from Eqs. �9� and �12� �with the upper sign in Eq.
�12�� by plugging n=1. Hence, there exist two zero modes,
�0=0 and �1

0=0, and SO coupling of ���s� type preserves
twofold degeneracy of the �=0 state typical of single-layer
graphene3,4,27 but changes its nature: degeneracy is dynami-
cal rather than symmetry conditioned �small Zeeman
splitting28 is disregarded�.

It follows from Eq. �9� that the in-plane spin polarization
S vanishes in all eigenstates. Indeed, because of the factor �1

in Ŝ=�1s, it mixes different components of the bispinor �, �
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and 	, and the mean value of their product is proportional to
scalar products of the oscillator functions �m with quantum
numbers that never coincide. Therefore, Sn=0 for all n. This
result is expected because S���k� of Eq. �7� vanishes after
averaging over the direction of k and follows from axial
symmetry of the problem.

Longitudinal polarization Sz, after eliminating 	 compo-
nent of �, can be expressed in terms of its � component,

Sz = 
��sz +
�2

�2 − 1
�s0 + �aa+ + a+a�sz����/
����; �13�

� is the energy of the state �, and normalization factor


���� = 1 +
�2

��2 − 1�2 
��2i���a+�2s− − a2s+�

+ ��2 + 1���aa+ + a+a�s0 + sz���� . �14�

Explicit expressions for Eqs. �13� and �14� follow from Eqs.
�9� and �10�. Their original form is cumbersome but greatly
simplifies after higher powers of �2 are eliminated by em-
ploying Eq. �11�, and �2=1 is applied. The final equation,
when expressed in terms of �n

�, is rather concise,

�Sz�n
� =

2�2�2n�2 − �2�
�2�1 − 2�2� + 2n�2�1 + 2�2�

, � = �n
�. �15�

This equation, together with Eq. �12�, provides exact expres-
sions for B dependence of spin polarization for all states with
n�1 and ��0. Because � appears in Eq. �15� only as �2,
polarization Sz is charge symmetrical: it coincides for elec-
tron and hole states with the same n and ��n

��.
In the weak field limit, n�2�1, �2, eigenvalues are

�n
+�1 and �n

−�2	n�n−1��2, and Sz is n independent and
proportional to B, �Sz�n

�� �2�2 �n�1 for �n
− states�. Be-

cause of the spectrum degeneracy at the k=0 point, the se-
quence �n

− is nonequidistant despite the parabolicity of the
spectrum.24 In the strong field limit, �2→�, eigenvalues are
�n

−��	2n and �n
+��	2�n−1�, and spin magnetization satu-

rates, �Sz�n
�� �1. In this limit, two ladders nearly overlap

and are split by ��n�	n /2 / �2��; the splitting increases with
n but for �2�n is small compared with the level separation
� /	2n inside each ladder. For ��13 meV, the field sepa-
rating these two limit cases, found from the condition �=1,
equals Bcr=c�2 / �e�v2��0.3 T.

In both limits, spin magnetization has opposite sign for �+

and �− ladders; hence, magnetization oscillates when Landau
levels cross the Fermi level. These de-Haas-van-Alphen-type
oscillations can be detected by Kerr spectroscopy29,30 even
for ferromagnetic substrates, and by torque magnetometer
techniques.31

Semiclassical regime is achieved for ��1 and n�1 with
n�2=�2 /2=const; for �=�k / ���, one recovers Eq. �6� from
Eq. �12�. Keeping �=const, one finds for electron branches,
�n

��0, in the first order in 1 /n,

�n
� �

1

2
�	1 + 4�2 � 1� −

�2

2n	1 + 4�2
,

�Sz�n
� � �

�2

n	1 + 4�2
= �

2�2

	1 + 4��k/��2
. �16�

Therefore, in the leading order of the expansion, level split-
ting ��n�1 remains n independent, while spin polarization
Sz has opposite sign for two spectrum branches and decreases
with n �or, for �=const, with the electron momentum k�. The
oscillatory dependence of the total spin magnetization on B
can be detected as discussed in the previous paragraph.

Therefore, all quantum states with �n
��0 are nondegen-

erate, and only two states �0=�1
0=0 are degenerate. These

two states differ strongly in their spin magnetization. For the
n=0 state, polarization �Sz�0=−1. It does not depend on B
but changes abruptly when B changes sign. For the n=1 state
with �1

0=0, polarization equals �Sz�1=−�1−2�2� / �1+2�2�; it
tends to −1 for B→0, changes sign at �2=1 /2, and saturates
to +1 for B→�. In this limit, contributions of two �=0 states
cancel. Such a behavior is unique because it suggests that SO
coupled graphene with filled �=0 states is unstable to ferro-
magnetic ordering in ẑ direction in weak fields B � ẑ, while
with increasing B the magnetization gradually vanishes. This
magnetization differs drastically from the edge-state magne-
tization of graphene zigzag nanoribbons proposed by Fujita
et al.32 because it originates from SO coupling rather than
from the exchange interaction. It also bears no similarity
with the Dzyaloshinskii-Moriya weak ferromagnetism33,34

because it is dynamical rather than symmetry conditioned
and develops in a paramagnet without any magnetic struc-
ture. The effect of electron-electron interaction on this pecu-
liar state needs a special investigation.35

For comparison with experimental data, one needs to add
magnetization Sz of the electrons in K and K� valleys. Be-
cause HK�

0 is related to HK
0 by a �2 canonical transformation

leaving the operator Ŝz of Eq. �2� unchanged, magnetization
has the same magnitude and sign in both valleys. This can be
also inferred from the time-inversion symmetry require-
ments. Therefore, total Sz equals the magnetization of the K
valley multiplied by the factor of 2.

Novoselov et al.5 compared the conventional QHE �Ref.
36� and two types of unconventional QHEs typical of
single-layer3,4 and bilayer graphene, the material notorious
for its exotic QHE properties.37 SO coupled single-layer
graphene introduces one more type of unconventional QHE.
Due to the fourfold degeneracy of zero modes ��0=�1

0=0
degeneracy times the factor of 2 from isospin, K�K�� valleys�
the step in �xy at B=0 equals 4e2 /h, as in single-layer
graphene without SO coupling. However, because spin de-
generacy is lifted in each valley by SO interaction, and only
isospin degeneracy persists, all B�0 steps are of 2e2 /h.
Therefore, the ratio of the magnitudes of the B=0 and
B�0 steps equals 2, as in bilayer graphene without SO cou-
pling. Depending on the magnitude of �, these 2e2 /h steps
can appear in pairs, as resolved 4e2 /h steps, similar to the
resolution of two spin components of the traditional QHE.
Spin-orbit coupled graphene on an isolating substrate would
become the optimal object for observing this new variety of
QHE and for spin manipulation, a challenging task for semi-
conductor spintronics.
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Apparently, among the perturbations that lower the sym-
metry of the Hamiltonian the largest is the staggering sublat-
tice potential of the substrate violating the equivalence of
A�B� lattice cites; manifestation of the broken sixfold sym-
metry was reported in Ref. 15. A staggered potential can be
described by a term Hst=u�z�z, where �z is a Pauli matrix in
the isospin space.9 This term creates a gap in the spectrum
and lifts the symmetry of K�K�� valleys. Adding Hst to
HK�K��

0 does not change wave functions of n=0 modes but
changes their energies to 
= �u �in dimensional units�. For
the n=1 soft mode, eigenvectors also change; now c1=0 but
c2 ,c3 ,c4�0. Energy spectrum can be found from a
cubic equation that for �u /���1 defines soft modes

1� �u�1−2�2� / �1+2�2�. As a result, the 4e2 /h step in �xy
splits into a plateau near B=0 and two e2 /h steps on both
sides of it. Lifting the K�K�� degeneracy also splits all 2e2 /h
steps, making the QHE of SO coupled graphene similar to
the traditional QHE with a resolved Zeeman splitting. We

notice that �=13 meV corresponds to a field B=120 T for a
Landé factor g=2.

In conclusion, a theory of the energy spectrum and spin
polarization in single-layer graphene, a subject to a substrate-
induced spin-orbit coupling, is presented. Energy spectrum
consists of two zero-gap bands and two gapped bands, and
all states are in-plane spin-polarized perpendicular to the mo-
mentum k. This polarization saturates at large k and vanishes
at the scale of spin-orbit energy when k→0. In a perpendicu-
lar magnetic field, two zero modes develop in each of K�K��
valleys. These modes show a peculiar magnetic behavior
suggesting a possibility of a perpendicular-to-plane spin-
orbit conditioned magnetism and produce a new variety of
unconventional quantum Hall effect.

I am grateful to F. Kuemmeth, C. M. Marcus, J. R. Will-
iams, and R. Winkler for stimulating discussions.
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